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Problems:

(1) By a space-time we mean a four-dimensional manifold X sup-
porting a Lorentzian metric g that satisfies the Einstein equa-
tions Rij − (1/2)Rgij +Λgij = 8πTij . (I.e. "Einstein curvature
tensor = matter-energy-stress tensor".) Relative to a diagonal-
izing basis, the components of Tij represent the energy density
ρ , and the three principal pressures pi. The dominant energy
condition requires ρ ≥ pi for each i.

Let X be a 4-manifold homeomorphic to the cone on a com-
pact homology 3-sphere M . (The case M = S3 underlies the
standard closed Robertson-Walker universe with energy density
Ω > 1.) Is there any Lorentzian metric on X , suitably spatially
symmetric, which satisfies the dominant energy condition? If
not, where does the topological obstruction lie?
(Lawrence Brenton)

(2) Consider a smooth hypersurface X ⊂ CP n+1 of degree n + 2,
so that the canonical bundle is trivial. Suppose X is defined
over R, and has a non-empty real locus L ⊂ RP n+1. Then X
carries a conjugation “invariantÔ Calabi-Yau (“C-YÔ) structure:
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conjugation reverses the Kähler form, and takes the holomor-
phic volume form to its conjugate. In this case, L is special
Lagrangian with respect to this C-Y structure and (obviously)
real-algebraic. Are “nearbyÔ special Lagrangian submanifolds
also real-algebraic? This is true for n = 1 and n = 2 (suitably
interpreted), but I don’t know it for any n > 2.
(Robert Bryant)

(3) Let M be a compact C-Y manifold and let λ be a class in
Hn(M,Z) representable by a special Lagrangian (“sLagÔ) sub-
manifold L. By McLean’s theorem [McL98], the (compact)
moduli space, sLag(λ), of special Lagrangian integral currents
that represent λ is smooth near L. In the cases where I can
compute sLag(λ), it is a smooth, orientable compact orbifold—
even when it contains points that are not smooth sLag subman-
ifolds. Is sLag(λ) always smooth? Orientable? This would be
important in the n = 3 case for the SYZ conjecture, although
observations of Joyce suggest that smoothness may not hold.
(see [Jyc])
(Robert Bryant)

(4) (After Misha Brin) Can ergodicity of the frame flow fail when
M is negatively curved and has full holonomy? The frame flow
Φt on the bundle FM of positively oriented orthonormal frames
on a compact Riemannian manifold M parallel-translates each
orthonormal frame E = {Ei} in TpM by t units along the ge-
odesic ray determined by E1. The metric induces a Φt invari-
ant measure on FM . The frame flow is known to be ergodic
on an open dense subset of the negatively curved metrics on
any M . When the holonomy of M lies in a proper Lie sub-
group G ⊂ O(n), however, ergodicity fails because each subset
of O(n)/G generates an invariant set (this occurs for Kähler
manifolds of dimension 4 or more, complex and quaternionic
projective spaces and the Cayley projective plane).
(Keith Burns)

(5) (After Misha Brin) Is the frame flow (see above) always ergodic
on odd-dimensional manifolds? Must it be ergodic if the cur-
vatures are strictly quarter pinched? Since manifolds lacking
full holonomy all have even dimension and (after normaliza-
tion) sectional curvatures ranging from −4 to −1, answers to
either of these questions would partially settle the previous one.
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The first was answered affirmatively [BG80] in all odd dimen-
sions except 7. Ergodicity is also proven under a very stringent
pinching condition in [BG80] and [BP01].
(Keith Burns)

(6) If two compact manifolds M and N are homotopy equivalent,
does MinVol(Mn) = 0 imply that MinVol(Nn) = 0? (Recall that
MinVol(M) denotes the infimum of the volume of (M, g) over
Riemannian metrics g with sectional curvatures lying between
-1 and 1.)
(Jianguo Cao)

(7) Let Mn and Nn be positively curved, compact graph-manifolds
that admit a homotopy equivalence. (See [Wld67] or [Sch86] for
the notion of graph-manifold.) Can M and N have the same
marked length-spectrum (or conjugate geodesic flows) without
being isometric?
(Jianguo Cao)

(8) If a compact Riemannian manifold has Gromov-hyperbolic uni-
versal cover X, can its Gromov norm vanish? Gromov hyper-
bolicity means that for some constant C = C(X), every loop in
X bounds a surface of area A ≤ C· (length of the loop).
(Jianguo Cao)

(9) (After Tom Farrell) Suppose a closed manifold M has nega-
tive curvature, fundamental group G, and, for some prime p,
a monomorphism Z/p → Aut(G). Consider the fixed set S of

the induced Zp-action on S(˜M) (the sphere at infinity of the
universal cover). Does S have finitely generated homology? Is
it an absolute neighborhood retract?

Positive answers would bear upon the Nielson realization ques-
tion. See [FJ88] for partial results.
(Jim Davis)

(10) Let M be a closed, nonpositively curved, locally symmetric Rie-
mannian manifold with no direct factor locally isometric to R.
Prove that M has positive Gromov norm. Savage [Sav82] did
this for M locally isometric to SL(n,R)/SO(n,R).
(Benson Farb)

(11) Let M be a closed, nonpositively curved n-manifold with nega-
tive Ricci curvature. Bound the degree of any continuous map

http://www.math.uchicago.edu/~farb/
http://www.indiana.edu/~jfdavis/
http://www.science.nd.edu/math/faculty/Cao.7.html
http://www.science.nd.edu/math/faculty/Cao.7.html
http://www.science.nd.edu/math/faculty/Cao.7.html
http://www.math.northwestern.edu/~burns/


4 BLOOMINGTON GEOMETRY PROBLEM LIST

f : N → M for any closed n-manifold N , as follows:

deg(f) ≤ C · Vol(N)
Vol(M)

,

with C depending only on n the Ricci curvatures of M and N .
Taking f = identity map, such a bound implies MinVol(M) > 0.
Connell and Farb [CF] obtain a uniform bound for M locally
symmetric with no H2 and no SL3/SO3 factors.
(Benson Farb)

(12) Let f : M1 → M2 be a homotopy equivalence between closed
3-manifolds, with M1 irreducible and M2 hyperbolic. Does the
‘barycenter’ mapping [BCG96] derived from f produce a home-
omorphism (i.e. explicitly solve the ‘homotopy hyperbolic’ con-
jecture)? What if we assume M1 is hyperbolic?
(Benson Farb)

(13) Call Mn ⊂ Rn+2 skew if no two tangent planes to Mn are par-
allel in Rn+2. Skew loops (n = 1) can be drawn on any non-
quadric closed C2 surface in R3. [GS]. Which negatively curved
surfaces in R3 contain a skew loop?
(Bruce Solomon)

(14) Give an example of a (compact) skew n-manifold in Rn+2 for
n > 1. An easy argument involving the intersection form on
the Grassmannian G2,4 rules out any skew surface in R4 except
possibly tori, and Tabachnikov [Tch] shows that no quadric
hypersurface Qn+1 ⊂ Rn+2 contains a skew n-manifold.
(Bruce Solomon)

(15) (After S. Tabachnikov) Does every non-exact 1-form onM = S3

differ from a non-vanishing 1-form by an exact 1-form? How
about on general M having Euler number zero? Jim Davis
points out that by Tischler [Tsh70], when H1(M,Z) 6= 0, the
answer cannot be “yesÔ unless M is a bundle over S1.
(Bruce Solomon)

(16) The parallel overcrossing number of a knotK is defined to be the
minimum, over all isotopic parallelsK ′, of the minimum number
of crossings of K ′ over K in any diagram for the link K ′ ∪K.
Does parallel overcrossing number equal crossing number for all
knots? I conjecture that it does. It is known to be bounded
below by the bridge number of K, and by 2g − 1 if g is the
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genus of K. See [CKS02].
(John Sullivan)

(17) The ropelength of a knot is its ratio of length to thickness (the
latter being the radius of the largest embedded normal tube
around it). Find an explicit non-trivial knot minimal (or even
just critical) for ropelength. Plane circles minimize among un-
knots, and minimizers exist for every knot type [CKS02], but
we have no other examples.
(John Sullivan)

(18) The nth hull of a knot K is the set of points in space through
which every plane cuts K at least 2n times. Every nontrivial
knot has a nonempty second hull. Is there a topological invari-
ant that guarantees its third hull is nonempty? See [CKKS].
(John Sullivan)

(19) Does the standard triple bubble in R3 use least area to enclose
and separate any three given volumes? I conjecture that it does.
See [SM96], and note that the two-dimensional triple bubble
problem has been completely solved by Wichiramala [Wch].
(John Sullivan)

(20) Garsia proved that every conformal structure on an orientable
surface is realized by an embedded surface in R3 [Grs62]. His
proof, however, is not constructive. Can one find a constructive
proof? For tori, Pinkall has done so [Pnk85]: He observed that
each conformal torus can be realized by a flat (Hopf) torus
embedded in S3, hence in R3 by stereographic projection.
(Matthias Weber)

(21) Is there a dodecahedron in R3 made from twelve congruent, non-
regular, strictly convex planar pentagons? (Bending or folding
the pentagons not allowed.) The strict convexity of each poly-
gon excludes the example one gets from the rhombic dodecahe-
dron by introducing an artificial vertex on an appropriate side
of each rhombus.
(Matthias Weber)

(22) (after M. Herman) Is there any closed Riemannian manifold N
whose geodesic flow is stably ergodic but not Anosov? For a
discussion of stable ergodicity, see the survey paper [BPSW01].
(Amie Wilkinson)
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(23) The time-1 map of an Anosov flow is always partially hyperbolic
(see [BPSW01] for a survey of partial hyperbolicity). Is there
any Riemannian manifoldN whose geodesic flow ϕ : SN → SN
is not Anosov, but whose time-1 map ϕ1 is partially hyperbolic?
(Amie Wilkinson)

References

[BCG96] G. Besson, G. Courtois & S. Gallot, Minimal entropy and Mostow’s
rigidity theorems, Ergodic Theory Dynam. Sys. 16 (1996), no. 4, 623–
649. 12

[BP01] K. Burns, & M. Pollicott, Stable ergodicity and frame flows, preprint
2001. To appear in Geometriae Dedicata. 5

[BPSW01] K. Burns, K. Pugh, C. Shub, M. & A. Wilkinson, Recent results
about stable ergodicity, Proceedings of Symposia in Pure Math-
ematics 69, American Math. Soc., Providence, RI, 2001. Also at
http://www.math.northwestern.edu/∼burns 22, 23

[BG80] M. Brin, & M. Gromov, On the ergodicity of frame flows. Invent.
Math. 60 (1980), no. 1, 1–7. 5

[BK84] M. Brin, & H. Karcher, Frame flows on manifolds with pinched neg-
ative curvature. Compositio Math. 52 (1984), no. 3, 275–297.

[CF] C. Connell and B. Farb, The Degree Theorem in higher rank.
Preprint. 11

[CKS02] J. Cantarella, R. Kusner, & J. Sullivan, On the Minimum Rope-
length of Knots and Links, to appear in Invent. Math. 2002. Preprint
arXiv:math.GT/0103224 16, 17

[CKKS] J. Cantarella, R. Kusner, G. Kuperberg, & J. Sullivan, The Second
Hull of a Knotted Curve. Preprint arXiv:math.GT/0204106. 18

[FJ88] T. Farrell & L. Jones, Rigidity for aspherical manifolds with π1 ⊂
GLm(R), Asian J. Math. 2 (1998), 215–262. 9

[Grs62] A. Garsia, On the conformal types of algebraic surfaces of euclidean
space. Comment. Math. Helv. 37 1962/1963 49–60. 20

[GS] M. Ghomi, & B. Solomon, Skew loops and quadric surfaces. To appear
in Comment. Math. Helvetici. Preprint arXiv:math.DG/0205222. 13

[Jyc] D. Joyce, Singularities of special Lagrangian fibrations and the SYZ
Conjecture Preprint, arXiv:math.DG/0011179. 3

[McL98] R. C. McLean, Deformations of calibrated submanifolds. Comm.
Anal. Geom. 6 (1998), no. 4, 705–747. 3

[Pnk85] U. Pinkall, Hopf Tori in S3. Invent. Math. 81 1985, 379–386. 20

http://arxiv.org/pdf/math.DG/0011179.pdf?front
http://arxiv.org/pdf/math.DG/0205222.pdf?front
http://arxiv.org/pdf/math.GT/0204106.pdf?front
http://arxiv.org/pdf/math.GT/0103224.pdf?front
http://www.math.northwestern.edu/~burns
http://www.math.northwestern.edu/~wilkinso/


BLOOMINGTON GEOMETRY PROBLEM LIST 7

[Sav82] R. Savage, The space of positive definite matrices and Gromov’s
invariant. Trans. Amer. Math. Soc. 274 (1982), no. 1, 239–263. 10

[Sch86] V. Schroeder Rigidity of non-positively curved graph-manifolds,
Math. Ann. 274 (1986) 19–26. 7

[SM96] J. Sullivan, & F. Morgan, Open Problems in Soap-Bubble Geometry,
Internat. J. Math. 7:6, 1996, 833–842. 19

[Tch] S. Tabachnikov, On skew loops, skew branes, and quadratic hyper-
surfaces. Preprint. 14

[Tsh70] D. Tischler, On fibering certain foliated manifolds over S1, Topology
9, 1970 153–154. 15

[Wld67] F. Waldhausen, Eine Klasse von 3-dimensionalen Mannigfaltigkei-
ten. II., Invent. Math. 4 (1967), 87–117. 7

[Wch] W.Wichirimala, The planar triple bubble problem, PhD thesis, UIUC,
2002. 19


	References

